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Backscattered Spectra From Rotating and
Vibrating Short Wires and

Their Relation to the Identification Problem

1. I' TltOI)t'(.'TION

Radar reflections ma% 1w relatedI to the specific nature of a target-its struc-

ture. cunfiguration. an,1 internal motion. If targets such as trucks, tanks, and
helicopters are illuminated with radar, the reflections contain spectral compo-

nents which are distinct from the Doppler shifts arising from simple translatory

motion. ror example it is well-knov-'n that a rotating helicopter blade modulates

the radar reflections from the helicopter with a frequency related to the rotation
rate of the blade. Vibrating membranes, because of their time varying position.

also (:ause modulation in the phase of the target return which results in frequency

shifts. The use of these spectral changes in the reflections to classify radar sig-

natures of various targets having internal vibrations and rotations may have pos-

sible applications in vehicle classification.
'.an.' military vehicles have periodic motions, internal and exterloal, with

definite trequencies. These motions affect the radar reflections and may be used

in vehicle identiffcatio.. Therefore, it would seem that an understanding of these
various phenomena must include an understanding of the contributions of the

vehicular rotations and vibrations. In this paper we examine a short wire under-

going two exceedingly simple motions, rotation and vibration. In these motions

the wire itself is taken to he rigid. The shortness of the wire-that is, short

(Received for publication 21 May 1975.)
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compared with the wavelength of the radar-means that we can treat the wire as a

Rayleigh scattrer. We first determine the scattering matrices for these

motions, and thus obtain the scattered fields for different polarizations of the

incident field. Applying Fourier techniques to the scattered fields gives the fre-

quenc% components.

The rotation and vibration spectra are quite different, indicating possibilities

for signature classifications. The differences also suggest possible directions,

both experimental and analytical, for future studies. These would include com-

bining rotation and vibration, analysis of more complicated structures such as

plates, propellers, and belts, and studies outside the Rayleigh region where the

ubiect dimensions .re no longer small compared wilh the wavelength. The ulti-

mate goal is to be able to synthesize the radar returns from real vehicles, frv'n

a oet of relatively simple models.

There are several appendices. The first is mathematical and descrihes the

polarization of radiation in terns of a cartesian basis or an equivalent circuiar

basis. ilth these bases, the formalism becomes quite simple and makes it eas3"

to set up the polarization scattering matrix. The derivation of the matrix and its

use are discussed in the same appendix. The three additional appendices deai with

the physical interpretation of the scattering from the wire. The rotating or

vibrating wire may be looked on as a microave moddl for Raman molecular

spectroscopy. Although the correspondence between the two.is not perfect-since

Raman spectroscopy is a quantum effect-a discussion of one in terms of the other

is illuminating. A second point is the relation of scattering from the rotating or

vibrating wire to the normal Doppler effect. It is true that the rotation and vibra-

tion lead to definite frequency shifts, but they are not the same as those found with

purely translnting objects. For clarity in discussion the difference must be made

evident. The final appendix contains a brief discussion of the energetic and angu

lar momentum transfers in the scattering process.

2. SC.rfEIIING FROM .% ROTATNG WIRE

As stated in the introduction, we restrict ourselves in this report to two very

simple motions. In this section we consider a rotating wire which is shoft , ' -

pared with the radiating wavelength. Physically this means that the wire actv ,tt

a point dipole, and that only the lowest electric mode as defined by Ilarring-n

and Mautz 1 is excited. Equivalentl3 we can say that the wire acts as a Ray,-!

scatterer.

1. larrington, 1. F., and Mautz, J.R. (1971) IEEE Trans, Antennas Propag.
AP.19:622.
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S~cler. a~; t rv-Aiv I ffi prco. ro r
for aR rtatuag 0,rl : xr* illumirit

.iraularl , 1 A.ArL- .. fh,. ! 1. .--

lZationl state of the uminlort fvIull .,.ill

linearl%, cir_'ularl% , or vilhptic al,._, ,

p larizcl. iionsi Irer -t .'t • 
roiotln-

in thtex%-plant, at uteRstat am.ular

velucitv b as sho:zi in Figure 1. Tht"

incil.eat ra~liatiort is mnochironatle

with fre, luencv jo. Th Jlirection of

propagation is alung the z-axis, that

is, the -:.ave vector k is normal to the

plane of rotation rif the wire, and k Figure 1. W ire llotating in the --x plane %% ith Angular Velocity
and k are both zero. For this geo-

metry, the electric field of the incident

wave has no z-component. Maxwell's

equations impose the requirement of continuity of the tangential components of the

electric field at a boundar. Because of the geometr%, the current induce] b% the
incident field must flow along the wire's axis. Therefore the scattered radiation

must be linearly polarized, since the field in the far zone has one component onl%.

This is independent ot the polarization of the incident field. Therefore the
reflected or scattered field in the far zone alwaN s has its electric vector parallel

to the wire at the instant of reflection. Naturally this implies that 6 is much

smaller than jo, which holds for all realizable cases. However, since the wire
rotates, the electric vector reflected at each instant will be linearly polarized in

a direction which depends on the temporal orientation of the wire at that instant.
It is this changing orientation which introduces the frequency h into the spectrum
of the reflected field.

To calculate the effects of rotation, we first write the incident and scattered

waves in terms of the cartesian basis (x,y) described in Appendix A,

2. Schoendorf, W.II. (1972) Frequency Spectrum and Backscattered Return
From a Rotating Short Wire PA-267, Lincoln Laboratory, M.I.T.,
Cambridge, Massachusetts.
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and

11. x X -~- ' k xt'

The unit vector along the wire is Uz, and I is tHc angle between the wire and the

xc-axis. The wire rotates with angular velocity 6; therefore 8 equals 0 t. Owing

to the requirement of eontinuzt% of tbp tangential components of F. at a surface.

IN' ta n Tri'k ES in terms of H I as

Es  A A
Es =C(E .u)u

A) Ei+CV. U) E (2)

a field linearly polarized in the direction of the wire. In Eq. (2), C is a propor-
.. E s

tionalitv constant. By taking the x and y components of E we find

ES c (A .)E +(. A.F i.u)E
u - x,

and

A , : Ai )2Ei'].
E S =C ,.(A.,u)( u~: V. u v. (3a)

y • x

But, Eq. (3a) may be written in the matrix form of Eq. (A2) in Appendix A

=CII

EiscnEl (3b)

where LR, is the scattering matrix. Since

(x. u) =cos 6 cos (& t) etc., (4)

Eqs. (3a) and (3b) enable us to determine the matrix elements rij of the scattering

matrix [R],



A A') '

r.,., . sin- (d t)

r12 r~ (. I ) X u } u m (11 t) COS( t) (5)

1/ 2 sin (2 t).

Lquations (:ia) and (3b) relat,' hsh, scattrred1 f10l' to th, ncAI., n" vl zi4. pro h.dd
A Aeach is expressed in turms of the eartesian Itasis (N.. O). If th.e irrvl+'rt field is

expressed in terms of the circular pularization jasis l, 1) siA , -ish ,, heter-

mine the reflected field in terms of the same basis, we appl l.q. (. "A) f Appen-

dix A.

L

The circular scattering matrix Q-I R Q is easily calculated to be

Q- 1 Q rl I r 11 I 2 2  (r 1 1 -r 9 2 2ir 12  (7)

(r l 1 - r 2 2 -2ir 1 2 ) (r 1 1 ' r 2 )

\% ith the help of Eqs. (5) and (7) we can determine the backscattered field for

the above geometr%, when the incident field is known. The main objective, how-

ever, is the determination of the spectra of the scattered fields. To obtain the

spectra or frequency dependence of these fields, we appl% Fourier techniques.

;ince delta functions allow us to use Fourier transforms for periodic functions as

well as aperiodic ones, the Fourier series becomes a special case of the t rans-

form. The convolution theorem states that the Fourier transform of a product of

two functions is proportional to the convolution of their individual transforms.

Since the temporal functions we deal with are simple trigonometric functions,

their transforms are combinations of appropriately weighted delta functions. The

trigc.nometric functions and their transforms are shown in Figure 2. The convolu-

tions are easily calculated graphically and are shown in Figure 3. By adding the

various convolutions we obtain the desired spectra.



"I (b)

7'4

N..

(d;

P" 

W

(e)

Figure 2. Fourier Transforms F(',) of
Various Trigonometric Functions f(t).Th ! dotted lines indicate imaginaryv

quantities

\U c* now consider three examples with the rotating wire.
E:xarple 1: The vire rotates in the xy-plane with uniform velocity b.

Th. incident field is kft circularly polarized (LCP), of unit magnitude, and
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Figure 3. Fourier Transforms F~u) of the Temporal
Functions Relevant to the Rotating Wire. The dotted
lines indicate imaginary quantities



propagates in the z-direction,

E i 4 exp i(kz- t)3. (8)

In terms of Eq. (A9) of Appendix A, EL equals unity and E equals zero. The

scattered field

Es -"Es I!, + 1:-s Aexp[_i(kz +xo t)

is computed fron Eqs. (6) and (7), and the amplitudes are found to be

Es r(C/2)(r -f rI ), and

Es, =(C/2)( II-r2 2 -2ir 1 2), (10)

where the r. are gi,,en by Eq. (5). It is clear, therefore, that, although theij
incident field is in a pure LCP state, the reflected field is a mixture of I.CP

and iRCP (ripnt circularly polarized) states. Since, from rq. (5)

I r 11 - -r 2 ir -21 I r, I .I22,

I ..! .I"1. (h a)

The left and right components are therefore equal, which we know must be

true because of the linear polarization of the scattered field.

We car also obtain the equality of the two components from the criterion

of Rayleigh scattering. Since the scattered power is proportional to the fourt.

power of frequency, we can write

I e 2/ rR1 (, o + 2 0)/ -o4  (11b)

Since is much smaller than x. , the ratio is approximately unit%.

The time dependent components of the reflected field are proportional to

(r1 1 4 r 2 2) eC':p (- iW 0t) and (r1 1 - r 2 2 - 2ir 1 2 ) eOp (-ii).

12



iI

frie real par of these expressions is

ROe'FS(t) I wC" 2cos 2(0 0 Cos(Wo0t)

- sin (2 & )sin (w~ t )7. (12)

The Fourier transform of Eq. (11), computed easily from Figures (3a) and

(3d), indicates that the spectrum consists of two lines of equal strength at the

two frequencies j; and ( +2b). Each line is of different polarization, the
0 0

shifted one being of the polarization admitted by the transmitting antenna.

Ti-e contributions at (u-2b) cancel.

If the incident field were RCP of unit magnitude and propagating in the

z-direction (so that ER were unity and EL zero), we would again obtain two

spectral lines but at (U - 26) and wo .

Example 2: The wire rotates in the xy-plane with uniform velocity ,

just as in Example 1. The incident field is still of unit magnitude but is now

linearl polarized.

i A ME xexpL i(kz- 0 t)]. (13)

Therefore E is unity and E zero. To express the scattered field in terms

of L and A , we apply Eqs. (.A12) and (Al4a)

x K]1. s  E i

and (14)

[Q~1
Therefore,

'CQ1 R =CQ-R

1(15)

13



which yields

ES =(C/,1Y) (r+ ir1 2 ), and

E~S = (C 1,I)(r l irl2

where the ri, are given by Eq. (5) as before. Again the magnitudes of the

two .':n'aneas are equal, and the reflected field is linearly polarized.

The time -dependent components of the reflected field are proportional to

,r1 l :ir 2 ) e:xi (-iio ). The real part of these expressions is

Re rEs (.±j = C 2 cos 2 (6 t) cos (, 0 t). (16)

The Fourier transform of Eq. (16), computed from Figure (3a), indicates

tiat the spectrum consists of three lines at w.0o and (w 0 2 6). The side lines

are each half the magnitude of the center frequency line at w0 .

As might )e expected, this is exactly the result we would obtain by adding

the spectra of a unit LCP and a unit RCP field as computed in Example 1.

For a linearly polarized field is decomposable into equal L and R components.

Example 3: The wire rotates witli an angular velocity 6 in a plane per-

pendicular to axis p shown in Figure 4. The axis raakes an arbitrary angle 6

with the direction of propagation which coincides with the z-axis. The unit
Arotation axis p has romponents (0, sin L., cos tA. The axis of the wire is

always normal to p, and at time to such that 6 to equals -/2 it lies in the yz-

plane. Therefore, ,-:0 which equals Uz(t ) has components (0, +sine,, cos6).

As the wire rotates it acquires an x-component, and the general time depend-

ence of the wire's direction is

U(t) rAo COS 6t)+Aosin (bt)

A A 6
X cos ( t)+y sint sin (6 t) - z cosL sin (b t). (17)

Substituting this value into Eq. (5), we obtain for the elements of the scatter-

ing matrix

14



A ~2 2( U) Cos (b t0,

1l2 x (' u u)( "  =sin t sin (btcos(kt)

1/ 2 sint, sin (2 t), and

r2 2 (o u)2 sin2 sin2 (b t). (18)

If we compare Eq. (18) with Eq.

(5), we see that the time dependency

of the scattering matrix has remained

unchanged. therefore, there will be

no chang in the frequency components

of the spectra as compared with those U,

obtained in Examples 1 and 2.

3. SCATTERING FROM A VIBRATIN" WIRE 7 1

z
The second motion considered in this

report is vibration. As before, we shall figure 4. Wire Rotating About

examine a short wire which acts as a point p-direction Which Makes an
dipole. Let the axis of the wire be orient,-d Anple 6 With the Direction of

Propagation. At instant shown
parallel to the x-axis of Figure 1, so that the wire direction 6 0 is in the

the wire vibrates in the z-direction with yz-plane

an oscillation frequency (5. The position

of the wire as a function of time is, therefore,

z=z 0sin( 6 t). (19)

Again, as in Section 2, the incident radiation is monochromatic with frequency

Wo (W >>b) and propagates in the z-direction. Consequently, the motion of the

wire is parallel to the direction of propagation, always advancing or retreating

with respect to the source.

15



A 
i

To compute the elements of CR), we remember that the axis of the wire uis

parallel to x. The elements of the matrix are

r (:. A)

r22 = 4 u) =0, and

r 1 2 ( .i) =. ) -0 , (2 0 )

since (( . U) equals zero at all times for this geometry. The matrix Q R Q is

therefore

and

both of which are time independent. We now apply these matrices to Examples

I and 2 of Section 2.

Example 1: The incident field is LCP, of unit magnitude, and prop-

agates in the z-direction.

Es

F j CQ R Q

R~i and

(C/12) [~i 0~.2LI].(2

The scattered field is linearly polarized, since J L and ER are equal.

Example 2: The incident field is linearly polarized (with E equal to

zero), of unit magnitude, and propagates in the z-direction.

10



( 1 0~)[ ]~ (23)

Again the scattered field is linearly polarized, with equal left and right com-

ponents. The reflected field will always be polarized with its electric vector

parallel to the wire (that is, in the x-direction) regardless of the state of

polarization of the incident field. Obviously, if the incident field is polar-

ized in the y-direction, there will be no reflected field.

As we have already mentioned, the scattering matrix is time independent,

yet there is a temporal variation in the position of the wire. To take account

of this temporal variation, we apply Eq. (9). In the case of the rotating

wire, the receiver and wire were fixed so that the term exp (-ikz) was a

constant which we could disregard. With tie vibrating wire this term is a

function of time and so must be considered. Equation (0) becomes

i s a S Four xp i [k z si (b to-ro (24)

Equation (24) shows clearly that the effect of vibration on the scattered field
is a phase modulation, whereas that of rotation is an amplitude modulation.

The real part of tihe exponential of Eq. (24) is a term proportional to

cos[ kzosin(t) - -ot], the Fourier transform of which gives the spectral

dependence of the scattered field. Since the reflection matrix is time

independent, it can be disregarded as an influence on the spectrum. The

Fourier transform cf the real part of the exponential is plotted in Figure 5

(see Champeney3 ),

3. Champeny, D.C. (1973) Fourier Transforms and Their Physical Application
Sec. 2. 5, p.36. Academic Press, New York.

17
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I

f(t) Acos[ kzosin(Ot)+wo t]

-o

F(w) 7-AI {J,(kz,) 8 (w - cao-n) + Jn(kz 0j8(w + w. , )}
n=-co

Figure 5. Spectral Dependence of a Phase Modulated Field.
Each line is a Bessel function of order n, Jn (kz 0 )

f(t) =cos [kzo sin (bt)-.r0t] , and

F(, ) = - E Jn (kzo)6 (t' - n ) n o(kZ) 6 ( o + + n (25)

The spectrum is an infinite series of equispaced lines, each line being

proportional to a Bessel function of order n where n runs from minus to

plus infinity. The nth side line measured from o is proportional to

Jn (kzo).
alternative derivation shows a clear physical relation between the modula-

tion and the Doppler effect. From Eq. (19) the velocity of the wire is

v z z cos ( t), (26)

18



which gives a Doppler shift

v/c A/zlc)cusbt. (27)

Since frequency ma% be interpreted as a time rate of change of phase, we write

. o .' = o 0, o C co00 ) (28a)

When integrated, Eq. (28a) gives the phase as

1 0 to ( 0 z0 /c) sin (bt). (28b)

The spectral dependence is obtained by taking the Fourier transform of cos as

before. In Eq. (28b) -0/c equals k0 , so that the results of the two approaches

are identical. It is also worth noting (and not unexpected) that the phase : is

directlN proportional to the displacement amplitude z 0 . Therefore the greater

z o , the greater the effect-all other factors being equal.

For a further discussion of the relation between the Doppler effect and rotating

or vibrating wires, see Appendix 13.

41. DISCUSSION

rhe body of this report has been concerned with the backscattered fields and

their spectra, obtained from short wires performing periodic motions. 13v choos-

ing the "short" wire, we simplified the problem and reduced tie scattering to that

from a point dipole or simple Ray leigh scatterer. The motions examined are

rotation and vibration. A wire undergoing these motions provides a scattering

model applicable to the complicated radar returns which comprise the identifica-

tion problem.

Given the short wire as the scatterer, we find that the spectrum from the
rotating wire is distinct from that of the vibrating wire. In addition, the spectrum

from the rotating wire depends on the state of polarization of the incident field,

unlike that of the vibrating wire for the geonetries considered here.

Rotation produces an amplitude modulation. For a linearly polarized incident

field there are two side lines separated frum the original frequency by plus or

minus twice the rotation frequency. For a circularl polarized incident field only

one side line appears, also displaced by twice the rotation frequency.

19



In contrast, vibration produces a phase modulation. The spectrum from the

vibrating wire contains an infinite series of equispaced lines about the incident

frequency line. The interline spacing is the vibration frequency, and the strength

of the nth line is proportional to the nth order Bessel function Jn(kZ ), where z o

is the vibration amplitude. Both spectra, therefore, provide the period of the

re2evant motion.

There are, of course, several possible approaches one might take to study
the identification problem. The one we have taken here is quite simple, yet ha.s
a physical interpretation that is easy to grasp. (A large part of this interpreta-

tion is contained in Appendices B, C, and D.) From the characteristic spectra

we can begin the study as a problem in signatures.

20
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Appendix A

The Polarization Scattering Matrix and the Decomposition of she Electric Field

When a target scatters an incident wave, the linearitN of Ma xv.ll's Uq-iations

imposes a linear relationship between the incident and scattered -. a%-s. A suc-

cinct and lucid description of this relation is achieved througth the, scattering

matrix which is written generally as

_ exp [11:i2

(Al)

In Eq. (Al) kis the wave vector and fl is the distance fromt the target to the point

at which the scattered field is observed. The matrix 'A, with elements a. is the

scattering matrix, and the incident and scattered fields are described as column

matrices defined in terms of orthogonal x and > components. Kennaugh 4 describes

the matrix and its applications at length.

4. Kennaugh, E. M. (1966) Antenna and Scattering Theory: Recent Advances
1:1-17, The Ohio State University, Columbus, Ohio.
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If %%e have a munostatic system, so that r'iciving and transmittinp antennas

are i -ntical, we have the case of bac1scattering and the orthogonal bases of the

two fields are the same. Equation (Al) biecomes

F 11 1 Xii
Es r., r.. 2~ i t

in which the proportionality factor is written as C; the matrix is nov" called '11
(for reflection) with matrix elements r,,, and x and x' are identical directions as

well as y and y'.

Ph% sically, the scattering process changes the polarization characteristics

of the radiation. For example, if the incident radiation is linearly polarized,

the scattered radiation ma% have an state of polarization depending on the peculiar

properties of the target. 'rhese peculiar properties include, of course, the state

of motion of the target. The motion of the target leading to changes in what is seen
by the incident radiation means that the matrix ' now varies with time.

Before continuing with the determination of '.C, we first formulate the

description of the fields in terms of orthogonal polarization states. Our treat-

ment of the polarization follows that of Jackson. 5 Since the propagation of light
is rectilinear and is a transverse x ave phenomenon, the electric vector is always

located in a plane normal to the propagation vector. Therefore, the electric

vector may be described in terms of two linearl% independent unit vectors. We
A A

shall use x and y to denote unit polarization vectors in the x and v directions. As

we shall see, we can also construct a pair of complex unit orthogonal vectors
(.and h that correspond to left and right circular polarization respectively and

are related to x and " through a straightforwarl transformation.

The electric field K of a wave propagating in the z -direction may be written

as

E (Z, t) FI' x -+" Ey V' exp i(k z - Iot,]  (A3)

where k is the wave vector and ) 0 is the circular frequency. The amplitudes
Ex and Ey are complex quantities which allow for a possible phase difference
between the x and y components of the field. If Ex and E. have the same phase,

the wave is linearly polarized with the resultant electric vertor I' oriented at an

5. Jackson, J.D. jI1962) Classical Electrodynamics, Chap. 7, p. 202. John
Wiley and Sons Inc., New York.
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angle with the x-axis such that

c tan- lI (Ex/ Ev). (A4)

If a phase difference exists between E. and Ey the wave is elliptically polarized.

A particular case is that for which Ex and Ev are equal in magnitude, but
their phases differ by -12 rad. Equation (A3) becomes

E (z, = Eo (x-iy) exp i(kz - ,ot )J (A5)

Taking the real part of Eq. (A4), we find for the components of the field

Ex - E cos (kz-iot), and

==E sin(kz-, t). (A6)

Facing the wave, that is'looking along the negative z-direction towards the
propagating wave, what does one see? Taking the positive sign in Eq. (A5),
(and therefore the negative in Eq. AG), we find that the '-lectric vector has a

constant magnitude and rotates with frequency -0 in the counterclockwise sense.
This polarization state is designated as left circularly polarized (LCP). Taking
the negative sign in Eq. (A5), we find constant magnitude for the electric vector,
as before, but a clockwise rotation. This we call right circularl polarized (RCP).

To describe a general state of polarization, we have used two orthogonalA

unit vectors, x and y, as our basis. An equally valid basis is the circular pair,

and i defined as

A A
S(l/..) (x+iy), and

(I0 .. (x, - i.Y-) (A a)

with properties

1. *. A-A*. :. -- 0 and

L *. A. I. (A7b)
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* t, ,r I *.,'r!Spu" L to pure 1.CP and the vekctor A to pure RCP. Solving
A A

;. (-,I f,,r nI lt-ads to the inverse transformations

A (/A A

VA W)

The circular basis is full equivalent to the cartesian basis, x and A', for .he

wave description. In terms of the circular basis Eq. (A3) becomes

L"L - R 11: exp Ii(kz-,t (A)

where LL and E R are complex amplitudes. In general, we can write the ratio of

EL and sR as

ER /EL - rexp (ia). (AI0)

In Eq. (AIO), r denotes the ratio of the magnitudes of the two amplitudes, and a

is their phase difference.

If EL and Ediffer in magnitude, (that is, r is not unity), but their phase

difference is zero, Eq. (Al0) describes an elliptically polarized wave. The

principal axes of the ellipse described by the electric vector are in the directions
A dA

of x and %. The ratio of the semi-major to the semi-minor axis is (0 +r)/( - r).

If the phase difference between EL and E R is non-zero, the axes of the

ellipse are rotated by -/2.

If the phase difference is zero, and the two amplitudes are equal (r equals

unity), the wave is linearly polarized.

l.astl-., if either E or i r is zero, the wave is circularly polarized.L R
The matrix formulation of these transfo mations greatly facilitates our

calculations. We start with the equivalence of the two bases (. Y) and (t, )

and define the two transformation matrices, "Q] and its inverse EQ- 1, as

:Q_ (I 1..2) -

(AII a)
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such that

QQ 1 =I (AlI bi

where I is the identity matrix. Writing the amplitudes as column matrices, we

can apply the matrices of Eq. (Alla) to write the transformations of any wave as

E E l
and (A] 2)

With Eq. (A12) we can transform easily from the cartesian to the circular

amplitudes, and vice versa for any arbitrary wave.

In Eq. (A2) we have related the cartesian amplitudes of the scattered and

incident waves through the scattering matrLx r 1], where [ 1] is the cartesian

scattering matrix. Using Q and Q-1 we can compute the circular scattering

matrix that relates the circular amplitudes of the scattered and incident waves.

If the incident field is given in terms of the circular basis, its cartesian com-

ponents are

x Q L

[41 (A13)

'rhe scattered field is dhen

E y Ex y El R ~ (Al 4a)
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uith C a proportionalit% factor. Since

L =_ Q -Ihx

we find as our final equatiori for the circular components of the scattered field

[R1 [ RILL (Al 15)
"therefore, the circular scattering matrix is Q-I I Q.

Equation (A15) applies to any scattering matrix '11]. We have imposed no

restrictions on it, but have pc-ovided a way of going from the cartesian to the

circular form, once R] is known.
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Appendix B

The Doppler Effect and Scatterers With Periodic Motion

In the Doppler effect, as evidenced by the use of radar reflections to deter-

mine target velocities, the motion of the target introduces a change of frequency

in the scattered radiation. This frequency change is a function of the relative

velocity between target and radiation source. Measurement of the change provides

information about the target velocity. In this report, we have discussed frequency

changes occurring with rotating and moving wires. The first is an amplitude

modulation, the second a phase modulation. Are we justified in subsuming these

frequency changes caused by periodic motions of a target under the general class

of Doppler phenomena?

B.1 TIE ROTATING WIRE AND TIE DOPPLER EPfCT

The normal Doppler effecti is radial, that is, the scalar product between

the target velocity and t!a radar propagation vector is no'z-zero. If the pro-

duct is zero, there is no effect. This is equivalent to the statement that there

is no classicial transverse Dopple.. effect. This is illustrated by Sommerfeld 6

6. Sommerfeld, A. (1954) Optics, Chap. 11, Sec. 13, p. 72, Academic Press,
New York.
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ill his !iscusszun tof reflhetllou from a no10% l in irror. If tile mirror has a

v 4locIt% eompoallt 4lo! lit propagation direction, tht trequenc% changes upon

reflection. If, hoi over, the mirror moves at right angles to the propagation

direction, fh. light x- refhectel %%ith no change ii frequt.ne%. To explain this,

one must remember that the %ire (unlike th- mirror) is not an invariant when

rotating. A large plane miorror with a uniform reflecting surface presents a

constant aspect to the incident radiation, vhen mloving transversohl. The

rotating wire is, hotherer, continually changing its aspect. Were the mirror

rotating, there %%ould he no frequenc change. We conclude that reflection by a

short vire, rotating in a plane normal to the propagation direction, does have

an effect which may he regarded as a classical transvese Doppler shift.

it is import:.nt to stress that this shift is not related at all to the relativistic
7

transverse Doppler effect, which is a consequence of the fact that clocks run

differently when viewed from different inertial systems. The relativistic trans-

verse Doppler effect is second order in v/c, where v is the relative velocity

hetween object and source and c is the velocity of light. The effects described

in this report, however, are first order in v'/c.

B.2 TIE VIBRATING WIRE AND Till I)OPPLEIt EFFECT

The frequency change caused by periodic vibration is a normal Doppler

phenomenon. In Section 3, the phase modulation is derived within the Doppler

framework (cf. Eqs (26) - (28)). Thie direction of vibration assumed in Section 3

is always parallel (or anti-parallel) to the propagation direction. If the wire

vibrated in the xy-plane, normal to the propagation direction, there would be no

effect on the frequency of the reflected radiation. The only effect would be on the

position of the return in the xy-plane. In this sense, the frequency change

associated with vibration is simpler than that due to rotation, since it can be

interpreted as a straightforward periodic Doppler effect.

7. Moller, C. (1972) The Theory of Relativity, 2nd ed. Sec. 2. 11, p. 59,
Clarend n, Oxford, England.

28



Appendix C

The Relation Between Roman Scattering and the Spectra of the
Backscattered Field From Wires With Periodic Motion

The spectrum of the field scattered from the rotating wire is characterized

in general by three lines, one at the frequency io of the incident field and two
displaced symmetrically by twice the rotation angular frequency from 1o" This
spectrum is strongly reminiscent of that of Raman scattering from a rotating
molecule. Moreover the spectrum from the vibrating wire has similarities to

that from an oscillator which is the simplest model of a vibrational Raman
scatterer. Close examination shows clearly that these similarities are not
fortuitous. However, there are definite differences between scattering from

macroscopic wires and molecules which preclude a one-to-one correspondence.
A study of both similarities and differences is helpful-indeed, very helpful-in
understanding the physical meaning of the two phenomena.

C. TilE RAMAN EFI"ECT AND TIlE ROTATING WIRE

Raman scattering frrm rotating molecules is a quantum mechanical
phenomenon, although a classical theory exists which does offer considerable
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insight. Detailed discussions of the effect are found in both llerzberg8 and

Kohlrausch. 9 The classical theory is given by Cabannes and Rocard. 10

The quantum explanation of the effect is described simpl%. An incident photon

of energy' 1o0 interacts with a rotating molecule. It can be scattered so that its

frequency and, therefore, its energy remain unchanged. However, scattering with

a change in frequency is also possible. The scattering molecule has discrete rota-

tional energy levels. If the molecule absorbs energy from the incident photon (so

that the molecule is raised to a higher energy level), the scattered photon has less

energy and, therefore, a smaller frequency than does the incident one. rhe

converse is also true. The interaction may be such that the molecule loses energy

and drops to a lower level. This energy is taken up by the radiation field so that

the scattered photon has greater energy and, therefore, a higher frequency than

those of the incident photon. The frequency : arising from absorption (or emis-

sion) is related to the energy difference between the two levels as

a E 1V. (CI)

These levels are, of course, discrete and their eigenvalues are determined by

solution of the relevant Schrbdinger equation which contains the rotational kinetic

energy term. For the rigid rotator these levels are

E ='h2 J(J+ )/21, (C2)

where J is the rotational quantum number and has the integral values, 0, 1, 2, ...

and I is the moment of inertia. The selection rules for the Raman transitions are

IJ z 0, * 2, (03)

and the intensity of the transition depends on the change of the molecular polar-

izability in a fixed direction during the rotation. When J equals zero, there is

no energy change and the undisplaced line is observed.

The classical theory presupposes a change in the polarizability arising from

the molecular rotation. The rotation affects the polarizability so that

c ao+CLI exp (i2,' r t), (C4)

8. I!erzberg, G. (1950) Molecular "pectra and Molecular Structure: I. Spectra
of Diatomic Molecules, Chap. I1, p. 66, Van Nostrand, New York.

0. Kohlrausch, K. W. F. (1.931) Der Smekal-Raman Effekt, Springer, Berlin,
Germany.

10. Cabannes, J., and Rocard, Y. (1929) J. Phys. Rad. 10:52, Paris, France.
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where a is the average polarizability, a 1 is the amplitude of the periodic change

caused by rotation and Ll is the angular frequency of rotation. The factor 2

appears because tie polarizability is the same for the molecule rotated through
1800 as before. An incident field E exp (LL ot) induces a time-dependent dipole

moment P,

P =a E exp (i, t), (C5)
- 0

which contains terms proportional to expi(u ° - 2,jiR)t] as well as exp (ii 0 .

Thus both tL.e clasoical and quantum theories multiply the rotation frequency by

2 so that 2-i1 appears in the scattered spectrum as it does for the rotating wire.

(The 2 in the quantum theory arises from the selection rule, Eq. (C3).)
In the classical theory, there are no restrictions on the values j, can have.

Unlike the quantum theory, all frequencies are allowed. The classical theory is
obviously very close to that used in Section 2 for the rotating wire. We may,

therefore, regard the rotating wire as equivalent to a iocating macromolecule.

There are at least two significant differences, however, between this macro-

molecule and a rotating molecule obeying quantum theory. The rotating wire

considered as a molecule does not have a set of discrete energy levels. Its

kinetic energy T is related to the velocity of rotation l as

T =1/2 j 2 (CG)

which is quite different from Eq. (C2). Since T is not quantized, neither is .

The energy is a continuum.

More important, perhaps, 's the fact that the wire cannot be considered apart

from its source of power. This also differs from the molecular case for which

we regard the molecule (at least to the first approximation) as being isolated. The

power source or motor drives the wire at constant angular velocity. If energy is

supplied to the wire by the incident wave (a decrease in scattered frequency), the

motor does a little less work. If energy is supplied by the wire to the scattered

field (an increase in scattered frequency), the deficiency is made up by the motor.

In effect, the energy of the wire never changes or, equivalently, the macromolecule

remains in the same energy level, independent of the scattering process. This

contrasts with the molecular Raman effect which leaves the molecule in a different

energy state.

A third point which should be remembered is that the orientation of the rota-

tion axis of the wire to the propagation direction of the field is at our disposal,
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whereas orientation of molecules is difficult and not possible for all cases. Hence

IRaman scattering from molecules is often from a randomly oriented assembly,

while scattering from a rotating wire provides a simpler well-defined system,

especially as regards polarization effects.

C. TIlE RAMAN EFFECT AND 'ile VIBRATING WIRE

Raman scattering from vibrating molecules is also a quantum mechanical

phenomenon. The simplest vibrating molecule is diatomic; each atom moves

with respect to the other in simple harmonic motion. Such motion is equivalent

to harmonic motion of the reduced mass about an equilibrium position. This is

represented by a harmonic oscillator whose Schridinger equation is readily

solved. The energy eigenvalues of the solution are

E (n) rtI ose (n 1/2), (M)

where Wosc is the oscillation frequency. Transitions between these levels lead

to energy changes in the oscillator and, hence, in the radiation field. The selec-

tion rules for allowed Raman transitions are bn - 1; that is, transitions are

allowed only between adjacent vibrational states. Therefore, illumination with

light of frequency T 0 will produce a spectrum containing a line at x and two

Raman lines at (u0 -uo osc).

The classical theory of Cabannes and Rocard I 0 interprets the effect ir terms

of a time-varying molecular polarizability

a=aLo +OLI exp (i~l.osct), (C8)

where a o is the average polarizability, as before, and a 1 is the amplitude of the

polarizability change caused by vibration. The resultant dipole moment induced

by the incident field will contain terms proportional to exp/i(LoE'rosc)] and

exp (i, 0t). These three frequencies will appear in the spectrum of the scattered

light. This differs from the vibrating wire which produces a scattered spectrum

with an infinite series of lines separated by frequency incrementsa, osc'

The vibrating wire examined in this report is less closely related to the

vibrating molecule than is the rotating wire to the rotating molecule. The mole-

cular vibrations correspond to internal vibrations within the molecule-unlike the

wire, the molecule is not rigid. These internal deformations are responsible for

the change in polarizability. The rotating molecule may, however, be looked at as
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essentially rigid. Therefore, for rotation the analogy between the wire and

molecule is considerably closer than for vibration.
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Appendix D

Energetic and Momentum Considerations

The interaction between the incident field and the scattering wire can lead to

an exchange of energy and of angular momentum between the wire and the field.

We know from the de Broglie relation that energy is a function of frequency.

E =t1,r. (Dl1)

The symbol h is Planck's action constant divided by 2,Y. Therefore, if the

frequency of the scattered light differs from that of the incident by &x, its

energy must also differ, and by the amount 11 A1.

A second point made by quantum theory is that light particles always carry

angular momentum. Photons may exist in either one of two states, LCP or RCP.

An LCP photon has a positive helicity and an angular momentum +h. Similarly,

an RCP photon has a negative helicity and an angular momentum -bi. These are

the only two allowed values of photon spin or intrinsic angular momentum. More-

over, spin angular momentum is frequency independent. No matter what the

photon frequency may be (from radio waves to I-rays), a single photon can have

angular momentum *lb only. Nonetheless, the net angular momentum of linearly

polarized light is zero. This is because linearly polarized light consists of equal

35

Preceding page blank



lay-

numbers of LCP and RCP photons. If a beam is lintarly polarized with N photons

of each type, the total angular momentum is thus 4 N "1 pluS - N 11 or zero.

In all the cases we have considered, our scattere." has been a short wir. The

reflection from such a wire (whether rotating, vibrating, or stationary) is alwa'. s

linearly polarized, regardless of the state of motion of the wire. (For rotation 1

must be small compared with jo, a condition which holds for all realizable mech-

anical rotation rates. ) This linear polari-ation is a consequence of scattering

from the linear short wire, which acts as a point dipole. However, one must be

careful in discussing the backscattered wave. It 2s true that the reflected radia-

tion is alway s linearly polarized, and in the direction parallel to the orientation of

the v'ire at the instant of reflection. Foi the rotating wire, this orientation is tiot

constant with time. The direction of polarization rotates with twice the velocit of

the wire. The doubling of the velocity is a consequence of the fact that it half a

period the wire has returned to its original state as seen b% the incident radiation.

For example, if the reflectedl vave is linearly polarized in the x-direction at a

given time, the %.ave reflected a quarter of a period later (-/2 b) is linearl., polar-

ized in the y-direction--provided, of course, that the electric vector of the incident

wave has a y-component. At a time half a period later (-Ib), tie reflected wave

is again polarized in the x-direction.

If the incident field is circularly polarized, it carries net angular momentum.

Yet those photons which are backscattered form a linearly polarized field. If N

photons (all LCP) are scattered, N h units of angular momentum have disappeared

from the radiation field and must ha% e been taken up by the wire. From this we

conclude thnt the radiation field has exerted a torque on the wire, luring the

scattering. erefore, ',rk has been dove on or by the mechanical system of the

wire and its driving motor.

Let us consider the Examples of Sections 2 and :3.

Rlotation-E.xample 1: The incident field is L(P and is monochromatic

with frequency" . The backscattered field is linearly polarized and has
0lines at 1 0 and (1 o - 2hb). Ther'efore, the incident field has exerted a torque

on the wirr which has resulted in a loss of field angular momentum. Secondly,

the wire (and therefore its driving motor) has supplied cnergr to the scattered

field, thereby increasing the frequency of part of the field from o to 0

Rotation-Elxample 2: Both the incideni and scattered fields are linearly

polarized so that there has been no exchange of angular momentum. More-

over, there are an equal number of photons having the two frequencies

(% + 2 b) and ('b - 2 6). If there are N with eael, frequency, their total energy

is 2N (h'i o). But this is precisely the energy of the incident photons which

were scattered. Therefore, there has been no exchange of energy between field

and wire.
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D.1 VIBRATING WIRE

The angular momentum considerations depend on the state of polarization of

the incident field. The reflected field is always linearly polarized, so that it

carries no net angular momentum. If the incident field is also linearly polarized,

the net angular momentum of the radiation field before and after scattering is

zero. If the field is circularly polarized, it has net angular momentum which is

lost in the scattering process. This is evidenced as a torque acting upon the

vibrating wire which must be balanced by a counter-torque exerted by the driving

mechanism to prevent rotation of the wire. This represents work done by the

driving mechanism, in other words, an energy current flowing to or from the

wire.

The spectrum of Figure 4 is symmetric about the frequency of the incident

field w0 apart from the signs of some lines. The intensity of a given line is

proportional to the square of that spectral field line; therefore, the energy

spectrum is truly symmetrical about wo" If we sum over all the lines, therefore,

we find that the total scattered energy does not differ from that of the incident

field which has been scattered, even though it is distributed over an infinite

number of lines, all ,ut one of which has a frequency different from the incident

frequency. Note that any energy changes in the radiation field must involve the

motor drive of the wire, either as an energy sink or source. This differs from

the molecular Raman scattering in which the energy change involves a quantum

jump of the molecule from one level to another as we discussed in Appendix C.
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